Course Type	Course Code	Name of the Course	L	Т	P	Credits
DSC	NGLC101	Earth System and Processes	3	0	0	3

Course Objective

Introduce the student to Earth as a system and the various processes that continue to shape the planet as a whole.

Learning Outcomes

- 1. Understand the Earth as a system in different scales
- 2. Understand fundamental concepts and principles that govern Earth system processes
- 3. Understand the interactions between the processes and their impact on the planet

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1.	Earth as a system; origin of the universe; formation of the Solar System; the position of the Earth in the Solar System; age of the Earth; the different 'spheres' of the Earth – geosphere, hydrosphere, atmosphere, cryosphere and biosphere	7	Learn about the origin theory of the Earth, its star and the other planetary bodies
2.	Composition and the internal structure of the Earth; Earth's internal heat; Earth materials – mineral and rock types; rock cycle; continental drift; plate tectonics; dynamics of the interior of the Earth	7	Learn about the interior and the dynamics of the Earth
3.	Geologic structures; topography; hydrologic cycle; glaciers; oceans; the sedimentary cycle; weathering and erosion; landforms; volcanism	7	Learn about the different structures and landforms of the Earth
4.	Earth's biosphere; biogeochemical cycle; the geologic time scale; Earth's fossil record; origin of life; search for extraterrestrial life	7	Learn about the Earth's biosphere
5.	Natural hazards; seismicity; earthquakes and tsunamis; atmospheric circulation; ocean circulation; ocean currents; El Niño and La Niña patterns	7	Learn about the natural hazards and their causes
6.	Earth's climate – past, present and future; Earth's heat budget; climate change; sea level change; Milankovitch cycles; greenhouse effect; global warming; anthropogenic causes; energy transition; renewable resources	7	Learn about the reality of climate change and the need for energy transition

Text Books:

- 1. Hefferan, K. and O'Brien, J., 2010. Earth Materials, Wiley-Blackwell, Sussex, 670 p.
- 2. Jacobson, M., Charleson, R.J., Rodhe, H. and Orians, G.H., 2000. Earth System Science: from biogeochemical cycles to global changes, *Academic Press*, 548 p.

Reference Books:

- 1. Jain, S., 2014. Fundamentals of Physical Geology, Springer, New Delhi, 494 p.
- 2. Kenneth, W. and Christiansen, E.H., 2004. Earth's Dynamic Systems, Prentice Hall, 759 p.
- 3. Davidson, J.P., Reed, W.E. and Davis, P.M., 1997. Exploring Earth: An Introduction to Physical Geology, *Prentice Hall*, 477 p.
- 4. Lowrie, W., 2007. Fundamentals of Geophysics, Cambridge University Press, 381 p.